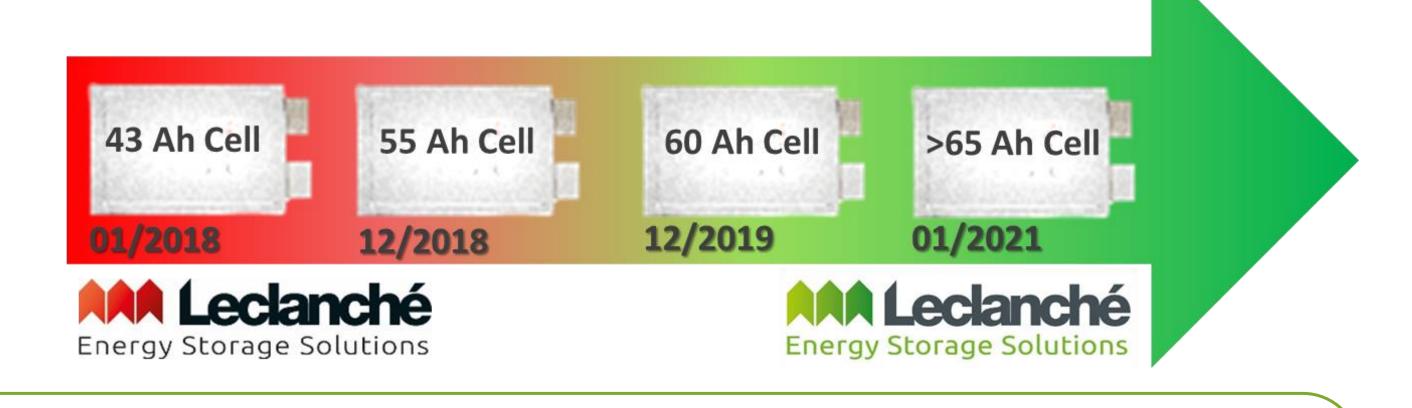


A reliable large-scale implementation of water-based slurry technology for production of high-performance lithium-ion batteries Dr. Petronela Gotcu, Dr. Hilmi Buqa

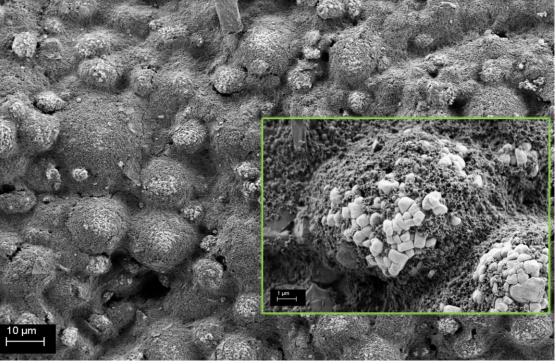
Leclanché offers to the energy storage market two kind of rechargeable lithium-ion cells: graphite/NMC cells for energy intensive applications, and titanate/NCA for leading performance in long-life and rapid charge applications.

Both cell types in pouch format are produced entirely in Willstätt, in Germany, and assembled in battery modules in Yverdon-les-Bains, in Switzerland. Such cells are manufactured on the same

Willstätt. Germanv

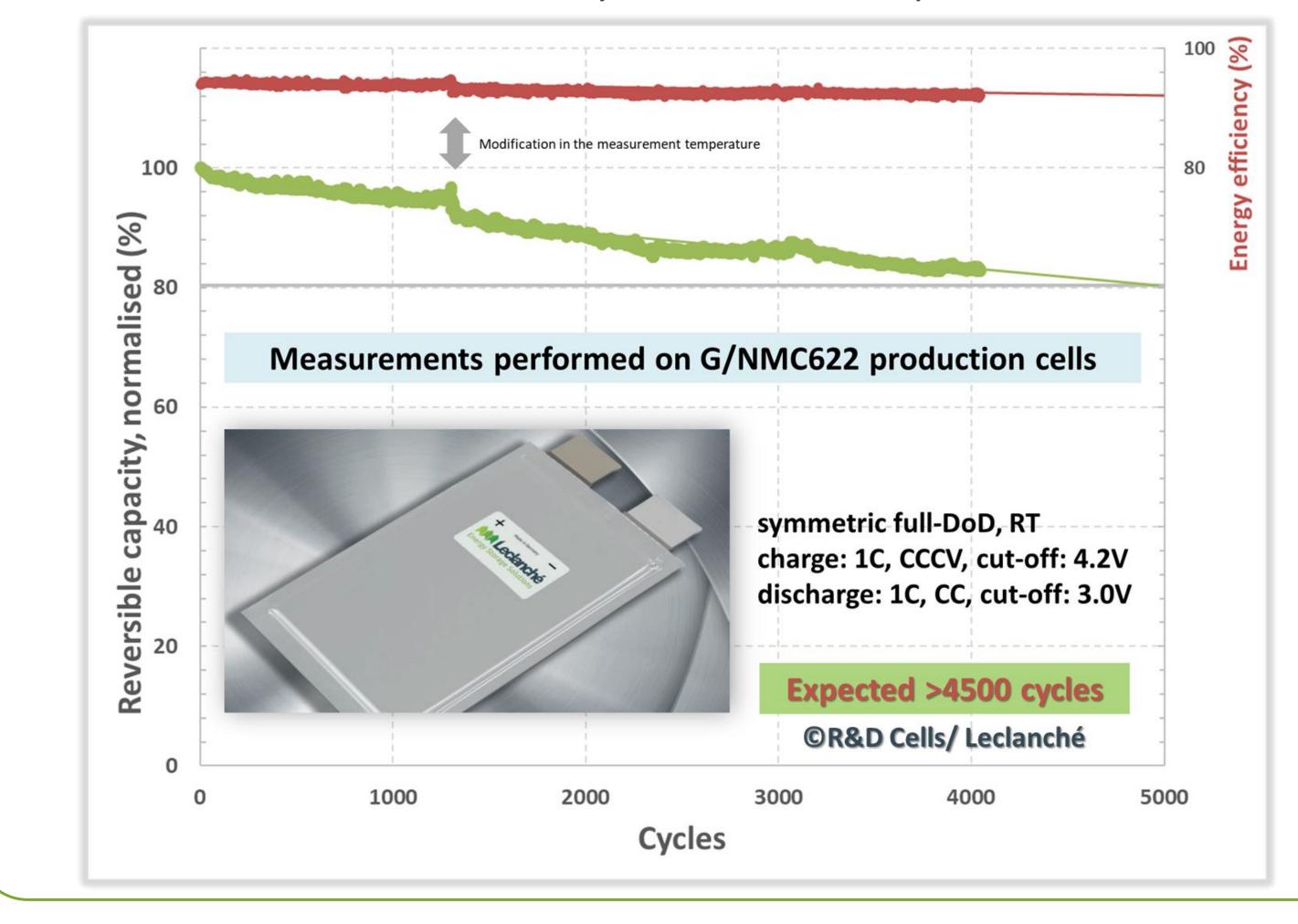

► The cell assembly starts with the electrode manufacturing exclusively using a water-based binder (WBB) process. This is a simplified process in comparison to the organic solvent-based process, leading to a minimum environmental impact, reduced end cost of the cell manufacturing and as well improved cell performance. While the technology used for anode fabrication is worldwide rather common, the cathode water-based technology is not well-known or understood.

This makes Leclanché one of the global leaders of the WBB technology.



Fabrication steps: a part of coating line, electrode notching and cell assembly machines

Our main focus lies on the development of the G/NMC cells containing NMC cathodes with high Ni content (NMC622) for an improved cell energy density and cell capacity (>60 Ah) required for e-transportation energy storage solutions.



► The manufacturing of these electrodes is however more difficult in general, due to complications of active material chemical and physical properties, e.g. higher intermixing rate of Li-ions with Ni-ions in the NMC lattice, due to similar ionic radius, yielding to irreversible structural changes during intercalation/deintercalation processes (charging/discharging of a cell).

SEM picture of a NMC622 WBB cathode

Currently we achieved the development of a reliable large-scale implementation process from the lab towards all production steps by transferring the R&D know-how to the industrial scale towards a safe and performant cell with high energy density and/ or for high power applications. The lifetime tests on this cell at ca. 1C/1C continuous for a 100% DoD validate over 4000 cycles at room temperature conditions.

- ► In particular, the problematics of the WBB slurry development is its stability with time due to variation in physical-chemical properties.
- ► Its instability could lead to a lower electrode quality, adhesion and cohesion issues, current collector foil affected by corrosion, etc.

Measurement Step	1C Discharge			5C Discharge		Power capability
cell type	Ah-Step	Wh-Step		Ah-Step	Wh-Step	% Capacity at 5C
55 Ah cell	54.2	196.8		43.0	148.5	79.4
prototype 60 Ah cell	57.9	210.1		45.8	157.6	79.1
60 Ah cell	59.1	213.8		48.2	165.1	81.7

Increase of cell capacity correlates to increase of power capability Power capability at 5C: >40 Ah (over 80% capacity)

Measurement Step	1C Discharge			5C Discharge		Power capability
Cell type (60 Ah)	Ah-Step	Wh-Step		Ah-Step	Wh-Step	% Capacity at 5C
Standard Electrolyte	59.1	213.8		48.2	165.1	81.7
Electrolyte 1	58.8	213.3		51.8	177.8	88.0
Electrolyte 2	59.3	211.4		57.1	195.7	96.1

Increase of power capability with further cell development (electrolyte type)

Development of slurry formulations containing NMC811 and higher Ni content is in progress: very good lab results;

Compatible anode materials (Si-based, SiO, /graphite) for NMC622/811 cathodes in large-format cells: ongoing;

Implementation of new WBB formulations for high energy density G/NMC (>65 Ah) and titanate (>34 Ah) cells.

Leclanché **Energy Storage Solutions**

R&D Cells, Leclanché GmbH / SA

petronela.gotcu@leclanche.com Email: hilmi.buqa@leclanche.com

© Leclanché SA 2020